2j(7j^2+jk^2+5k)-9k(-2j^2k^2+2k^2+3j)=0

Simple and best practice solution for 2j(7j^2+jk^2+5k)-9k(-2j^2k^2+2k^2+3j)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2j(7j^2+jk^2+5k)-9k(-2j^2k^2+2k^2+3j)=0 equation:


Simplifying
2j(7j2 + jk2 + 5k) + -9k(-2j2k2 + 2k2 + 3j) = 0

Reorder the terms:
2j(jk2 + 7j2 + 5k) + -9k(-2j2k2 + 2k2 + 3j) = 0
(jk2 * 2j + 7j2 * 2j + 5k * 2j) + -9k(-2j2k2 + 2k2 + 3j) = 0

Reorder the terms:
(10jk + 2j2k2 + 14j3) + -9k(-2j2k2 + 2k2 + 3j) = 0
(10jk + 2j2k2 + 14j3) + -9k(-2j2k2 + 2k2 + 3j) = 0

Reorder the terms:
10jk + 2j2k2 + 14j3 + -9k(3j + -2j2k2 + 2k2) = 0
10jk + 2j2k2 + 14j3 + (3j * -9k + -2j2k2 * -9k + 2k2 * -9k) = 0
10jk + 2j2k2 + 14j3 + (-27jk + 18j2k3 + -18k3) = 0

Reorder the terms:
10jk + -27jk + 2j2k2 + 18j2k3 + 14j3 + -18k3 = 0

Combine like terms: 10jk + -27jk = -17jk
-17jk + 2j2k2 + 18j2k3 + 14j3 + -18k3 = 0

Solving
-17jk + 2j2k2 + 18j2k3 + 14j3 + -18k3 = 0

Solving for variable 'j'.

The solution to this equation could not be determined.

See similar equations:

| t-4=21 | | t-4=24 | | 2.5x+1.5x=6 | | 15x^3-12x^2+3x= | | -20=-4+z | | -20=-4+7 | | 3x-50=1 | | 6+1x-10x^2=0 | | 7x-50=1 | | -10=-n+2-2n | | -14x^3-7x^2= | | 3x*27723355675= | | (x-6)7=49 | | 3x*2= | | 12=2x-7x-8 | | 9x^2+6x-1=0 | | 62-4x=14x+18 | | 3x*2=9 | | 10x^2+29x+10=0 | | 10x^2+29x+10=0 | | 23=k+18 | | 50=8x-x+1 | | x+23=18 | | (x+p)*(x+q)= | | 2x-45=11 | | 7+q=-24 | | 6b^2-4b=2b | | 6-11=8x | | 8-9x=158-44x | | (2c+3)*(4c+3)= | | -y=-x-5 | | 11-6=8x |

Equations solver categories